IoT.est
Internet of Things Environment for Service Creation and Testing

Smartness in the context of IoT technologies
19th June, 2014, London, UK

Klaus Moessner
Centre for Communication Systems Research
University of Surrey
Guildford, UK
IoT.est – a quick reminder

• IoT.est is investigating and developing a test-driven service creation environment (SCE) for Internet of Things enabled business services.
• The IoT-SCE enables the acquisition of data and control/actuation features of sensors, objects and actuators.
• The project provides means and tools to define and instantiate IoT services that exploit data across domain boundaries and that have testing build in by design.
• IoT.est facilitates run-time monitoring and will enable autonomous service adaptation to environment/context and network parameter (e.g. QoS) changes.
Why do we need “smart” in the IoT?
But how does “smart” help us?
IoT.est: where do we need smartness?

- IoT enabled Business Services: Machine interpretable (semantic) descriptions
- Service Composition: A Knowledge based approach
- Service Components: Re-usable, interoperable and adaptive
- Abstraction: Mapping to heterogeneous platforms and large scale deployment
- Testing (Design Time): Automated generation of tests
- Monitoring (Run-Time): Context-aware service adaptation

- This requires: *machine interpretable description* + interoperable domain knowledge + *automated discovery and composition, reasoning and decision making*
Smartness in the IoT requires common models

- **Service model**
 - IoT.est service model, IoT-A service model, OWL-S

- **Entity and resource models**
 - IoT models, W3C SSN

- **Test models and Test component descriptions**

- **Common models and knowledge-based to describe the domain knowledge**
 - Linked Sensor (IoT) data approach
Approach and Mechanisms for semantic modeling

• Linked data approach
 – using URI’s as names for things;
 – using HTTP URI’s to look up those names;
 – providing useful RDF information related to URI’s
 – including RDF statements that link to other URI’s

• Access and discovery mechanisms and interfaces
 – Logical reasoning and querying large scale data

• Ontology alignment and ontology mapping
 – Semi-automated and manual alignment
 – Developing alignment and enhancement tools
Languages (formal/non-formal)
Technologies (toolkits, SW tools)
Protocols enabling semantic interoperability

• RDF/OWL representations
 – Also investigating alternative representation and reasoning mechanisms for constrained environments (e.g. Binary RDF, IETF approach)

• Ontology design tools
 – Protégé

• Common Interface and access end-points
 – Standard interface and service models

• Ontology mapping and alignment
 – Ontology engineering phase
 – Automated tools
IoT.est project: Internet of Things Environment for Service Creation and Testing

http://ict-iotest.eu/